| 1. | The conditions of term by term integration sequence of integrable functions on infinite interval 无穷区间上可积函数列逐项积分的条件 |
| 2. | The integral on infinite interval is an indispensable part of the theory of integral 无穷区间上积分的讨论是积分理论中不可缺少的一部分。 |
| 3. | Existence of unique positive monotone solution for nonlinear differential equations on infinite interval 无穷区间上非线性微分方程单调正解的存在唯一性 |
| 4. | In this paper , we discuss the problem of non - absolutely integral theory for infinite interval and give some applications 本文中,我们对无穷区间上向量值函数非绝对积分理论进行了讨论,并给出了一些初步应用。 |
| 5. | In the second chapter , we study a basic theorem of estimations for the fundamental functions of hermite interpolation of higher order on infinite intervals 第二章研究了无限区间上高阶hermite插值基本多项式的界的估计的基本定理。 |
| 6. | Based on this result , convergence of gaussian quadrature formulas for riemann - stieltjes integrable functions on an arbitrary system of nodes on infinite intervals is discussed 应用这个结果,我们讨论了关于riemann - stieltjes可积函数f ( x )基于无限区间上的任意节点系的gauss求积公式的收敛性。 |
| 7. | In this paper , more stronger estimations of bounds for the fundamental functions of hermite interpolation of higher order on an arbitrary system of nodes on infinite intervals are given 本文主要研究基于无限区间上的任意结点系的高阶hermite插值,给出了基本多项式的界的估计的更强的结果,即文中的基本定理。 |
| 8. | In respect that , the concept of region which is made up of infinite interval sequence is introduced . based on this , unary operation about region and binary relationship between region is defined 基于上述考虑,在本文中,我们提出了由区间的无限序列组成的区域的概念,定义了区域的一些一元运算和二元关系。 |
| 9. | 4 . using the bielecki ' s norm and the index theory of fixed points in a cone , we study the existence of positive solutions of boundary value problems for second order functional differential equations on infinite intervals 利用bieleck ' s范数和锥上的不动点指标理论,我们研究了无穷区间上二阶泛函微分方程边值问题的正解的存在性。 |